Newly Discovered Mode of RNA Replication Uncovers Previously Hidden Layers of Complexity
The mechanisms and processes of cellular information storage, processing and retrieval have always been a focus of ID argumentation and research. Indeed, it was the complexity and elegance of these systems which first captured my attention as a junior undergraduate as I became interested in the implications of information-rich systems in biology and the possible explicative powers of intelligent causation.
In recent years, there has been a dramatic surge in our appreciation of genomics and the processes of information flow in the cell. Papers continue to flood in, reporting on a plethora of recent discoveries which take genomic complexity to a whole new level, leading many academics to tentatively re-evaluate the causal sufficiency of Darwinian mechanisms, the dual forces of chance and necessity.
One recent paper, published in the journal, Nature, documents the discovery that human cells have the largescale capacity to copy, not only DNA, but also RNA molecules. According to the paper’s Abstract,
Read More ›Small (<200 nucleotide) RNA (sRNA) profiling of human cells using various technologies demonstrates unexpected complexity of sRNAs with hundreds of thousands of sRNA species present. Genetic and in vitro studies show that these RNAs are not merely degradation products of longer transcripts but could indeed have a function. Furthermore, profiling of RNAs, including the sRNAs, can reveal not only novel transcripts, but also make clear predictions about the existence and properties of novel biochemical pathways operating in a cell. For example, sRNA profiling in human cells indicated the existence of an unknown capping mechanism operating on cleaved RNA, a biochemical component of which was later identified. Here we show that human cells contain a novel type of sRNA that has non-genomically encoded 5′ poly(U) tails. The presence of these RNAs at the termini of genes, specifically at the very 3′ ends of known mRNAs, strongly argues for the presence of a yet uncharacterized endogenous biochemical pathway in cells that can copy RNA. We show that this pathway can operate on multiple genes, with specific enrichment towards transcript-encoding components of the translational machinery. Finally, we show that genes are also flanked by sense, 3′ polyadenylated sRNAs that are likely to be capped.